EXPRESS Pallet Payload and Optical Window Accommodations for the International Space Station **Chris Dunker** OSS & OES Research Program Office, GSFC ESSP-3 AO Pre-Proposal Conference 6/14/01 # Agenda RPO Role ISS Vehicle **EXPRESS Pallet** Considerations on Unpressurized ISS Use **WORF** Considerations on Pressurized ISS Use at the WORF General ISS Payload Consideration: Manned Flight Safety **Crew Training** **Operation Concept** Retrieval STS and ISS Reviews **RPO** Website ## **RPO** Role for Payload Support - Coordinate payload planning, accommodations, allocations, manifesting, development, integration, and operations, and any associated issues between HQ, payload developers, international partners, other NASA centers, and the ISS Program - Assist ISS Program/Boeing in defining payload interface requirements including thermal, mechanical, electrical, data, contamination, operations, crew training, programmatic (schedules, data deliverables, documentation, reviews) - Shepherd payload developers through the STS/ISS systems, procedures, and reviews ### **ISS Vehicle** ### Orbit - Nearly circular, inclination 51.6 deg - Altitude 189 to 248 nautical miles (350 460 Km) - Reaches maximum 52° latitude north and south - Covers 85% of globe, 95% Earth's population - Flies over same spot approximately every 3 days, with the same lighting every 3 months # U.S. Truss 3/30/01 # **EXPRESS Pallet** ### U.S. Truss - EXPRESS Pallet - 2 nadir pallets and 1 zenith pallet on starboard truss currently planned - 6 adapter plates per pallet - All sites are allocated to NASA - Exceptions for the Canadian Space Agency (CSA) and barter arrangements with International Partners - Mass 227 Kg per adapter payload - Payload Envelope - 1.1m ram/wake - 0.86m inboard/outboard - 1.2m zenith/nadir - Power - 750 W of 120 Vdc and 500 W of 28 Vdc available per site, however power will be limited by ability to dissipate heat - 2.5 kW of combined 120 Vdc and 28 Vdc to be shared by 6 adapter payloads - 120 Vdc keep-alive power during ISS reduced power modes and 120 Vdc contingency power provided ### U.S. Truss - EXPRESS Pallet (Con't) #### Data - Low rate telemetry via MIL-STD-1553B bus, max 20Kbps available to Pallet, assume 2 Kbps per adapter payload - 6 analog signals and 6 bi-level discretes available per adapter payload monitored by Pallet Controller Assembly - High rate science data provided via Pallet ethernet, assume - 6 Mbps max throughput for Pallet - 250 Kbps average data generation rate per payload - Payloads buffer data - Transmit at 1Mbps average rate or 6Mbps burst ### U.S. Truss - EXPRESS Pallet (Con't) - Pointing - Knowledge 0.1 deg at GPS sites - Degrades with distance to ~1-2 deg at S3 attach sites - Stability 2.5 deg/axis/orbit - Pointers are being developed outside of NASA for specific EXPRESS Pallet adapter payloads - Payloads must provide own pointers - No thermal control provided by Pallet - Pallet/Payload mechanical interface hardware and use of shipping container provided by ISS Program - Robotic installation and retrieval primary, Extravehicular Activity (EVA) contingency only - Carrier - First payload set launches on Pallets - Returning payloads and future individual payloads ride on carriers provided by ISS Program # Considerations on Unpressurized ISS Use ### Contamination - Molecular Deposition of the ISS Environment = 130 A/yr - Need to be concerned about molecular deposition (long-term and sporadic). Issue is especially critical for short wavelength instruments - Use of retractable aperture covers can help (e.g., SAGE III) ### Altitude - Can vary from 190 to 250 nmi with smaller short-term variations superimposed on longer solar-cycle induced variation - Altitude reboost anticipated approximately every 3 months (nominally) ### • Attitude Knowledge/Pointing - ISS attitude knowledge will be reasonable well known and stable, but fine pointing knowledge/control at the location of instrument may need to be augmented by the payload - ISS attitude holding capability (2.5 degrees per axis per orbit) may need to be augmented by payload pointing (e.g., HEXAPOD for SAGE III) ### Considerations on ISS Use (Con't) ### Viewing Possibility exists for partial or periodic obstruction of viewing by Shuttle visits, solar panels, other instruments, etc. #### Power - Have significant power available but will need to share with other instruments - Will be periods of low power, e.g., during shuttle/ELV dock/undock ### • Data Handling/Communication - Can command via S-band, get downlink via Ku band with good but not complete coverage - Payloads need capability to store and dump high rate science data ### Upmass Launch opportunities are scheduled but infrequent until the ISS assembly is complete # Window Observational Research Facility (WORF) WORF 3/4 schematic view showing the relationship between payload volume and avionics bays. US Laboratory nadir window; the pane (Fused Silica) has a 20" (50.8cm) clear viewing area. To the right of the window is the handwheel for opening the window shutter. The "U"-shaped structure below the window is a quick disconnect (QD) that controls the pressure between the two pressure panes. # Window on Orbit ### **ISS WORF** Schematic showing the construction of the nadir window and its Integration into the window mount. The kick pane will be removed for during window research operations. INBOARD Window/mount integration into the Space Station structure. The external cover can be moved out of the way by use of the hand wheel located to the left. ### **ISS WORF** - 20-inch diameter fused silica window located in nadir side of the US Laboratory Module - Optical quality of window is superior to any window flown on a manned mission - Measured optical quality confirms wavefront error of λ / 14 over 6-inches, peak to valley, reference λ = 632.8nm, with scratch pane removed for payload operations - WORF rack adjacent to window provides support infrastructure for camera/remote sensor operations ### Window Transmittance Curve ### **ISS WORF** - Payload Mass - 136 Kg - Payload Envelope - 53.3cm x 76.2cm x 50.8cm - Power - 28 Vdc, 560 W maximum to any payload interface - 2 kW total available for payloads - Thermal system capacity determines allowable power draw - Data - Maximum data rate 8 Mbps with approximately 1.3 Gb storage provided - Low and medium rate telemetry and video available - 2 analogs and 3 discretes per payload - 2 Primary means of thermal control - Forced air cooling - Water cooling - Payloads can be operated in any combination of crew operated, crew tended, ground commanded, or fully autonomous ### **WORF Field-Of-View Schematic** Schematic of the International Space Station, showing the field of view for the window in the X-Z plane. Schematic of the International Space Station, showing the fields of view for the window in the Y-Z plan, orthogonal to the view shown in figure 2. # Considerations on Pressurized ISS Use for Earth Science Research #### Altitude - Can vary from 190 to 250 nmi with smaller short-term variations superimposed on longer solar-cycle induced variation - Attitude/Pointing Knowledge - Pointing knowledge is available in the ISS data stream but may need to be augmented by payloads - Vibration Isolation - Window facility designed to mitigate vibration input from ISS environment, payloads with large optics may need augmentation for vibration isolation - Crew Interaction - Payload may be completely autonomous or have varying levels of crew interactions/operations # Considerations on Pressurized ISS Use for Earth Science Research (Con't) - Viewing - Viewing limited to Window Field-Of-View but with no obstructions - Power/Thermal - Substantial power available with active thermal control - Data Handling/Communication - Can command via S-band, get downlink via Ku band with good but not complete coverage - Transport to ISS via various possible carriers: - Multi-Payload Logistics Module (MPLM) - Middeck Locker(s) - SPACEHAB Locker # General ISS Payload Considerations: Manned Flight Safety - STS and ISS safety review system combined for flight and ground - Substantial documentation increase over ELVs - Significant safety oversight required - Safety and hazard verification - Level of rigor independent of payload size or \$ value - 3 step review process - Phase 1 review within 3 months of PDR # General ISS Payload Considerations: Crew Training - "Standard" operations don't require Payload Developer (PD) input, e.g. robotic placement - Unique payload handling on-orbit requires training procedures, documentation - Crew familiarization package to be provided by PD - Contingency operations involving crew intervention will require ground or on-board training # General ISS Payload Considerations: Ops Concept - PI operates payload and receives data through MSFC via a workstation at a secure location of PI's choice - Increment = crew rotation period, ~ 3 months - Planning Period ~ 1 year - "Increment Scientist" (IS) represents all Code Y payloads operating on ISS for a planning period and works directly with PIs - IS is part of a team with a Lead Increment Scientist who represents all payloads to ISS Program during ops and contingencies - Reporting required after each increment with additional post flight reporting # ISS TO SCIENCE USER END TO END CONNECTIVITY # General ISS Payload Considerations: Retrieval - Payloads must be returned to ground - Retrieval planning must take place prior to launch - Payload anomalies and configuration changes must be tracked while on-orbit - Safety re-assessment requires original design documents and operations records be maintained - Retrieval Certification of Flight Readiness (CoFR) and Safety review required - De-integrate from STS and return payload to PI - MO & DA budget must include reserved retrieval costs # Payload Supported STS/ISS Reviews and Deliverables The payload developer must support a certain template of ISS Program reviews and deliverable. The following is a minimum, but not limited to, list of those items: | Reviews (Payload Must Attend) | Approx. Date | |---|--------------------| | Flight/Ground Payload Safety Review - Phase 0/1 | PDR +3 mos | | Flight/Ground Payload Safety Review – Phase 2 | L-20 mos | | Payload Increment Requirements Review (PIRR) | L-12, L-8, L-4 mos | | Flight/Ground Payload Safety Review - Phase 3 | L-9 mos | | GSFC RPO Payload System Acceptance Review = Preship | L-6.5 mos | | Rollout Status and Launch/Mission Readiness Review | L-12 wks | | Certification of Flight Readiness (CoFR) Review | L-6 wks | | Reviews (Payload May Need to Provide Inputs) | Approx. Date | |---|--------------| | Cargo Integration Review (CIR) – (Full Truss Payload) | L-9 mos | | Increment Operations Readiness Review (IORR) | L-9 mos | | Increment Flight Operations Review (IFOR) | L-7 mos | | Flight Operations Review (FOR) | L-4 mos | | Flight Readiness Review (FRR) | L-2 wks | # Payload Supported STS/ISS Reviews and Deliverables (Con't) **Deliverable** Approx. Date Flight/Ground Payload Safety Data Packages Phase 0/1 Flight/Ground Payload Safety Data Packages – Phase 2 Flight/Ground Payload Safety Data Packages – Phase 3 Payload Integration Agreement (PIA) and Unique Addenda Mission Evaluation Request (MER) Baseline Payload Verification Plan Completed Payload Verification Requirement Sheets Draft System Requirements Data Set (SRDS) **Baseline SRDS** Ship Payload to KSC Payload Turnover to KSC DDD +1 mag PDR +1 mos L-22 mos L-11 mos Refer to Site Specific Documentation L-6 mos (Nominal) L-4.5 mos (Nominal) ### Contact Us Office of Space Science and Office of Earth Science Research Program Office for International Space Station NASA Goddard Space Flight Center Mail Code 804.G Email: bpark@pop400.gsfc.nasa.gov Website: http://rpo-iss.gsfc.nasa.gov/